
ULTIMATE VFX – (V2.6.5)

(DOCUMENTATION LAST UPDATED MARCH 05T H, 2017 – PLEASE VISIT THE LINK BELOW)

HTTP://WWW.MIRZABEIG.COM/PRODUCTS/ULTIMATE-VFX/DOCUMENTATION/

CONTENTS

Introduction... 4

Quick-Start / Locating Prefabs ... 5

Asset Project Hierarchy .. 6

Expansion Packs – Themed Prefab Sets.. 7

Keywords – The Secret to Super-Fast VFX Construction ... 9

Compound Keywords (Samples) .. 10

Material Presets ...11

Particle Shaders ... 12

Plugins ... 13

Scripts .. 14

Basic Scripts ... 15

- ParticleSystems .. 15

- DestroyOnParticlesDead : ParticleSystems ... 16

- DestroyAfterTime .. 17

- AnimatedLight .. 18

- Rotator .. 19

Advanced Effects: Particle Affectors .. 20

- VortexParticleAffector .. 20

- TurbulenceParticleAffector ... 20

- AttractionParticleAffector ... 20

Advanced Effects: Particle Plexus ... 22

- ParticlePlexus .. 22

Advanced Effects: Particle Lights ... 25

- ParticleLights .. 25

Texture Import Settings ... 27

Image Effects & Post-Processing .. 29

Updates / Patches.. 30

http://www.mirzabeig.com/products/ultimate-vfx/documentation/

External Demos.. 31

Tutorials .. 33

Legal / Licensing Information ... 34

Contact | Feedback | Suggestions, etc. .. 35

This document will walk you through the entire Ultimate VFX library and how to

best take advantage of it.

INTRODUCTION

SCREENSHOTS FROM INSIDE THE EDITOR USING EXISTING PREFABS FROM ULTIMATE VFX WITH
ONLY UNITY’S OWN IMAGE EFFECTS. MASSIVE 4K WALLPAPER VERSIONS ALSO AVAILABLE HERE!

Ultimate VFX ships with over 300 prefabs with intensive care put into the visual look and feel of each

effect. Created from a massive library of over 200 textures (including several spritesheets/atlases, so the

individual texture count is actually much higher – going into the thousands), with a combined size of over

600MB, you can easily create your own effects by modifying and tweaking the existing prefabs, or creating

your own from scratch.

Originally released at the very start of 2015 with Unity 4.6, Ultimate VFX (aka UVFX), has since been

steadily increasing in both quantity and quality, based on user experience, feedback, and even

improvements that have been introduced into Unity itself. As the majority of effects are created with the

default Particle System component (“Shuriken”), you’ll have no problem working with UVFX’s prefabs.

Although Ultimate VFX is primarily a collection of particle effects, it includes much more. From custom

scripts for manipulating particles with realtime forces, to a twister-creating editor extension with simple

controls allowing you to easily make particle-based galaxies and tornadoes! UVFX is a complete solution,

even including custom particle shaders.

http://www.mirzabeig.com/products/ultimate-vfx/wallpapers/

QUICK-START / LOCATING PREFABS

Because of the inherent nature of having a large asset such as this, along with other similar assets from

myself that are designed to seamlessly import into the same project (cross-product compatibility!), the

folder structure may, at first, be a little confusing.

If you’d rather just jump in to the prefabs and don’t care so much about an explanation for the folder

structure, simply refer to the screenshot of a fresh import below:

For even more prefabs, just open up the respective expansion folder(s):

ASSET PROJECT HIERARCHY

When you first import UVFX into Unity, this is what you should see:

All my assets will import into the root folder of “Mirza Beig”. UVFX ships with several additional bonus

assets such as shaders, plugins, and even themed prefab expansion packs. These are sorted into their

respective folders. If, for example, you download additional plugins I’ve made, you’ll find these under

“Editor Extensions”. Likewise, particle system assets from me on the store will import into the “Particle

Systems” folder – this is where you’ll find UVFX.

 Opening up the Particle Systems folder, you should see this:

“_Common” simply has assets that are not specific to a single asset package and will be shared by all my

particle-based works for demo purposes only.

Opening up “Ultimate VFX” you’ll see two additional, ordered folders…

1. Assets – Where all the main materials, textures, and prefabs are.

2. Expansions – Where you’ll find all the related expansion packs and their prefabs that use the

main assets (created using the textures, materials, and scripts from “1 - Assets”).

EXPANSION PACKS – THEMED PREFAB SETS

With so many high-quality textures included as a baseline with UVFX, it would be a waste to not continue

creating even more effects using them! Although the main showcase is constantly updated, those prefabs

aren’t necessarily production ready (too many particles, lack of attention to overdraw, etc.) and are more

for showing what can be achieved with the content. Of course you may – and are encouraged! – to make

your own effects using the showcase prefabs (the ones from the screenshot below) as a starting/reference

point. But instead, perhaps you’re someone who’s looking for ready-to-use prefabs with minimal hassle.

This is where expansion packs come in.

Similar to the prefab showcase, these are carefully constructed prefabs that are not only amazing in and

of themselves, but are optimized so as to use less particles and reduce overdraw, all without sacrificing

visual quality! They come in sets based on a popular theme, such as with XP Action for fiery explosions,

and volumetric-looking smoke stacks, as well as XP Storm for torrential rainfalls, cold thunderstorms,

foggy environments, and other weather/storm-based effects.

Some expansions, like the aforementioned XP Action and XP Storm, are included with Ultimate VFX, so

you can get started right away without worry. In addition, they may also be sold separately as standalone

VFX packages that would only contain the textures and materials required to build the effects included

with them.

NOTICE HOW XP ACTION IS ALSO SOLD ON THE ASSET STORE AS A STANDALONE
EXPANSION FOR NON-OWNERS OF UVFX. YOU GET ALL THESE AWESOME PREFABS FREE!

In the future, more FREE expansion packs are planned to be added based on feedback (such as a sci-fi

themed set), along with paid expansions at significantly reduced prices for UVFX owners only (like YOU!)

and at some other, “regular” price point for non-owners who may purchase the same expansion pack as

a standalone asset.

These are heavily based on existing customer feedback, so please refer to the forums if you’d like to see

a particular theme set created and added as a potential update in the future.

file:///C:/Users/SCLT/Documents/Documents/Unity/Asset%20Documentation/forum-old.unity3d.com/threads/349411/

KEYWORDS – THE SECRET TO SUPER-FAST VFX CONSTRUCTION

With such a large collection of effects (along with several expansions), it helps to be able to quickly find

what you’re looking for without having to manually navigate through so many folders. With this in mind,

all the prefabs, materials, and textures (the main components required for creating particle effects inside

Unity) have a unique naming scheme that allows you to type in a few letters/characters to find what

you’re looking for in the project view search bar.

Below is a breakdown of the keywords you can use (don’t include the quotations):

- “pf_” – Prefab.

- “vfx-“ – Visual effect. Used alone, may result in materials, prefabs, and/or textures.

o “vfx-ult_” – Ultimate VFX.

- “xp-“ – Expansion pack.

o “xp-action” – Action expansion pack.

o “xp-storm” – Storm expansion pack.

o “xp-titles” – Titles expansion pack.

o “xp-shockwaves” – Shockwaves expansion pack.

- “mat_” – Material.

- “tex_” – Texture.

Note: You can sometimes omit the dash or underscore at the end, depending on your usage with other

keywords. See compound keyword examples below for…examples. Generally speaking, however, you only

need to type as much as it takes for the project view to show you what you wanted to find anyway.

COMPOUND KEYWORDS (SAMPLES)

“pf_vfx” – Show all the VFX prefabs from all my VFX-related assets. No exceptions!

“pf_vfx-ult” – Show only the Ultimate VFX prefabs!

“pf_vfx-ult_xp“ – Show only the Ultimate VFX expansion pack prefabs.

“pf_vfx-ult_xp-action – Show only the Ultimate VFX Action expansion pack prefabs.

…and, well, you get the idea!

When you need to find something, use the appropriate keyword to have it itemized for you by Unity. In

the example screenshot below, typing in “pf_vfx” will list out all the VFX prefabs in your project! It’s a

simple but powerful system for finding exactly what you need.

MATERIAL PRESETS

UVFX comes with several pre-configured material variations.

This is useful so you don’t have to constantly duplicate and change the existing materials assigned to

particle systems for a particular texture, and instead you can just swap the material with one of its variants.

As an example, let’s say you want tweak an existing smoke-based particle system. Obviously, it would be

using a material with a smoke-y texture applied to it. Even so, maybe the soft particle value isn’t suitable

for your needs. A soft particle factor of 1.0 is too much or too little for how you want to use this particular

effect, so now you have a choice – either leave it as-is, or create a new material somewhere in your project,

hence creating more clutter and disjointing the base assets used for the VFX package you’ve downloaded.

Even if you’re creating your own effects from scratch using the textures in UVFX, you’ll find that having

several material presets available is a huge timesaver.

With UVFX, however, you can just swap out the material for the best matching variant and save yourself

the hassle. This is a problem I consistently ran into myself, which is why I decided to create so many

different (but common/most-likely) configurations.

Materials have their own keyword identifiers to help you quickly find out what settings are used:

Here you’ll see just three textures (cloudlet2, cloudlet3, and the default Unity particle texture) having

eight different material configurations available. Where add/alpha/alphaDistort are the names of the

shaders, “_sp” stands for the soft particle factor, and “_dst” means the distortion amount (only for

distortion based shaders – included with UVFX).

Generally, for materials, the last keyword is the main parameter followed by its value. Soft particle factor

(_sp), distortion (_dst), etc.

PARTICLE SHADERS

Most of the particle materials use the default Unity particle shaders (additive, alpha blended). Sometimes,

that’s not just not good enough. Sometimes, you need more.

More control, more options, more of that wow-factor.

UVFX ships with several additional shaders specifically made to allow you to unleash your creativity.

These shaders are actually based on examples from AAA titles such as the “Kingdom Hearts” series and

“InFAMOUS Second Son”. After watching several VFX videos of commercial game titles, I decided to

include shaders that would allow anyone to easily recreate similar effects using just particles.

As an example, the distortion shader is common in many games (distorting anything rendered behind the

particle), and the intersect highlight shader (click for a GIF!) was specifically inspired by Second Son.

Although these shaders provide several new ways to show off your VFX, they are nevertheless based off

the default Unity particle shaders, so you don’t lose any of the original options (soft particles, shader

colour tinting, and so on). You only get more!

http://gfycat.com/InstructiveWhimsicalGharial

PLUGINS

Most of the plugins included with UVFX can be used to manipulate particle systems directly. Below is

where to find them in your project:

And how to open up their respective editor windows:

TODO: …explain each plugin in detail.

SCRIPTS

This section will walk you through the most useful of the many scripts included with this

package, and how they can augment and accelerate your VFX.

There are two folders to consider where the majority of the components will be found:

1. “_Common” scripts.

2. “Scripting” Effects scripts.

The following pages will outline how to use these components, along with what they do. The

easiest way to use them is to simply add them as a new component by name (like with any other

MonoBehaviour):

Basic Scripts

- ParticleSystems

Notice the plural – it’s ParticleSystem(s), not ParticleSystem. Used to control several ParticleSystem

components that are parented to a common GameObject.

For this component to be useful, there should be at least one particle system either on the game

object itself, or on child objects:

Has several public functions that are shared with its single-particle system counterpart.

Almost every looping prefab in this asset has this component attached to it for the int

getParticleCount() function which returns the combined particle count of every particle system

in the hierarchy that is shown in the demo scenes. Feel free to remove this script.

Also contains an isAlive() method which can be used to determine if the entire hierarchy of particle

systems is finished animating. See DestroyOnParticlesDead for a child of this class that makes use of

this.

- DestroyOnParticlesDead : ParticleSystems

Inherits from ParticleSystems. Generally used to create one-shot particle effects which are

instantiated, then automatically destroyed when the effect is finished playing.

Common examples: explosions, muzzle flashes, shockwaves, most weapon impact fx, gore, etc.

Attach this on either a single particle system, or a nested group (same as you would with the

ParticleSystems component) to ensure the object is destroyed when all particle systems under its

control are no longer “alive”.

A particle system is considered “dead” when it has been alive for at least its duration (in seconds), it

has no particles left to emit, and all particles that have already been emitted are dead.

For this reason, looping must be set to false for EVERY system within the hierarchy, and the

duration may optionally be set to the lowest possible time required:

Almost every one-shot prefab in this asset has this script attached. If you plan on using these

prefabs as-is, you should keep this component attached to prevent the object from lingering in

the scene for longer than it has to.

Alternatively, use the DestroyAfterTime component for a non-particle specific, and less precise

counterpart if you know the object shouldn’t be alive for longer than a specified period of time after

being instantiated.

- DestroyAfterTime

A generic component that will automatically destroy the object it’s attached to after the specified

amount of time after it is first created (either by already being in the scene at start, or through being

instantiated).

- AnimatedLight

Use this to easily animate lights for particle effects without having to delve into Unity’s more complex

animation system. Almost all prefabs in this asset have at least one (point) light attached with this

component. Lights, in general, can be very expensive.

Set loop to false and auto-destruct to true for one-shot effects.

Adding this component to an object will automatically add a Unity light component if there isn’t

already one attached. For performance, you may wish to disable shadow casting, as these can be

extra expensive for low-end hardware.

- Rotator

A generic script component used to rotate an object by some amount (in degrees) per second around

an axis in either local or world space. In the image below, the object will rotate -180 degrees per

second around its own up axis (same as transform.up).

Rotator can be used to create interested rotating trail effects with particles. For this effect, the

rotator game object has two child particle systems:

…with their simulation set to world space, and their emission to some amount by distance (not

time). The first has a Z-offset of 1, while the other has a Z-offset of -1, such that they are on opposite

ends.

ADVANCED EFFECTS: PARTICLE AFFECTORS

All particle affecters apply their own additive forces to particle systems. It’s best to enable and tweak

the Limit Velocity over Lifetime module for all particle systems affected to prevent overdriving their

speeds.

As a start, try these values.

- VortexParticleAffector

…

- TurbulenceParticleAffector

…

- AttractionParticleAffector

…

Animated GIF #1 (turbulence field):

http://gfycat.com/OrganicBarrenDikkops

Animated GIF #2 (turbulence "missiles"):

http://gfycat.com/TheseFemaleIrishwolfhound

Animated GIF #3 (turbulence + vortex + attractor):

http://gfycat.com/AdmirableFreshAmericantoad

Animated GIF #4 (leaf storm):

http://gfycat.com/InsidiousThreadbareAfricangroundhornbill

Animated GIF #5 (leaf storm 2):

http://gfycat.com/ExaltedSecondaryGalapagospenguin

Animated GIF #6 (leaf storm + lit particles):

http://gfycat.com/EnragedFirmBaldeagle

http://gfycat.com/OrganicBarrenDikkops
http://gfycat.com/TheseFemaleIrishwolfhound
http://gfycat.com/AdmirableFreshAmericantoad
http://gfycat.com/InsidiousThreadbareAfricangroundhornbill
http://gfycat.com/ExaltedSecondaryGalapagospenguin
http://gfycat.com/EnragedFirmBaldeagle

PERFORMANCE TIP:

- If possible, set the particle system’s simulation space to World for better performance. This saves

the component from having to calculating individual particle positions, which can be a significant

performance impact for large sets.

ADVANCED EFFECTS: PA RTICLE PLEXUS

- ParticlePlexus

Simulates the “Plexus” effect (an After Effects plugin), connecting all particles within a user set range

to each other using Unity’s LineRenderer component.

Simply add the component to any game object with a ParticleSystem component attached to it (one

will automatically be added if it doesn’t exist) and tweak the settings until you get the look you’re

going for. You’ll need to be in play mode to see the effect.

The component requires a line renderer template, from which it will create the connections, but you

can use the included templates (look at the image below) to save time:

If you want to create your own template, simply create a new game object, attach a LineRenderer

component to it, and save that as a prefab. You can tweak the settings as you please at any time:

Max Distance: the radius around a particle to look for other particles.

Max Connections: the maximum number of line connections to make per particle.

Max Line Renderers: the total limit of lines that can be made within this system.

Width From Particle: 0.0 = use only the template width, 1.0 = use only the particle width. Any value

between 0.0 and 1.0 will be a linear mix between the value from the template and particle.

Colour From Particle: 0.0 = use only the template colour, 1.0 = use only the particle colour. Any value

between 0.0 and 1.0 will be a linear mix between the value from the template and particle.

Alpha From Particle: 0.0 = use only the template alpha, 1.0 = use only the particle alpha. Any value

between 0.0 and 1.0 will be a linear mix between the value from the template and particle.

Line Renderer Template: the basis from which all line connections will be instantiated. Ideally a

prefab, but can be a local game object in the scene (make sure not to leave a null reference).

Delay: update delay in seconds. Can be useful for performance, but is mostly an aesthetic parameter.

Always Update: this component will not update when all particles are out of view (culling). Check

this to force an update even when the particles are not seen (not recommended for performance).

PERFORMANCE TIP:

- If possible, set the particle system’s simulation space to World for better performance. This saves

the component from having to calculating individual particle positions, which can be a significant

performance impact for large sets.

ADVANCED EFFECTS: PA RTICLE LIGHTS

- ParticleLights

Best used with deferred rendering.

This extremely easy-to-use, versatile component enables real light emission from particles. Simply

add it to any game object with a pre-configured particle system attached to it; alternatively, if this

isn’t done, one will be added for you automatically.

For every active particle in the system, a light source will follow it, adapting its position, colour, and

size (as the light range). The remaining common parameters can be controlled from the

ParticleLights component itself. This ensures maximum flexibility as you can easily tweak the particle

system to your liking and the respective light sources will change accordingly.

Scale: used to adjust the relative range of your lights (range = particleSize * scale).

Intensity: affects the immediate brightness of your lights.

Colour: used to tint the particle light colour.

Colour From Particle: 0.0 = use only the component colour, 1.0 = use only the particle colour. Any

value between 0.0 and 1.0 will be a linear mix between the particle colour and the colour set in the

component.

Shadows: change the shadow type for each light. This can be extremely expensive!

PERFORMANCE TIP:

- As a general rule, it’s better to have large numbers of small lights and/or a small number of large

lights. And don’t enable shadows per-particle light unless you absolutely need to!

TEXTURE IMPORT SETTINGS

In Ultimate VFX, Sprites (single texture images) and spritesheets (multi-frame, animated image

sequences) have their own common texture import settings which are shared by the same types. Sprite

have one setting, and spritesheets have another, regardless of the actual resolution and data of the

textures.

For sprites, the maximum import resolution is 1024px.

For spritesheets, the maximum import resolution is 4096px.

However, this is only in the editor.

The actual maximum resolution (the largest texture size) for both sprites and spritesheets is actually much

higher. It is only reduced in Unity’s importer to allow for faster load times when first importing this asset

into your project.

For sprites, the maximum actual resolution is 4096px.

For spritesheets, the maximum actual resolution is 8196px.

This means that, should you need a higher resolution texture, such as if you’re working on a next-gen title

with massive target display resolutions (1080p, 4k, etc.), you can easily change the resolution in the

importer to the texture’s actual resolution for higher quality.

Additionally, you should enable mipmaps for extra-smooth textures:

Note that doing so for each of these options will increase the memory requirements of your build.

Of course, the reverse is also true. If your target platform is lower-end hardware with smaller screens

(such as for mobile) and less texture memory, you can safely decrease the resolution in the texture

importer. This does not affect the original texture and you can always change this back!

You can also force a stylized look by disabling mipmaps, turning down the resolution to the lowest, or

near-lowest settings, and using point filtering – all from the texture importer! See below:

STYLIZED/PIXELATED LOOK USING LOW-RESOLUTION TEXTURE IMPORTER VARIANTS WITH
POINT FILTERING. ALL FROM WITHIN UNITY!

IMAGE EFFECTS & POST-PROCESSING

To keep this asset clean, easy to update, compatible for end-users, and independent, I do not include any

external (read: not created/owned by me!) assets, including the ones from Standard Assets.

That being said, the image effects components are still attached to the camera, so importing the Standard

Asset image effects from the top-most menu under Assets ➜ Import Package ➜ Effects along with the

Cinematic Image Effects from Unity will allow you have the exact same setup as those used in the demos.

If these are not imported to your project prior to importing UVFX, you will receive some missing script

component warnings on the first import only.

UPDATES / PATCHES

Updating a large asset on the store can take some time. Along with having to carefully setup a new draft

and then uploading the entire asset again, the review process for updates can be lengthy at times.

For this reason, this asset is structured in such a way that makes it extremely easy to apply small patches

to either fix issues or add new content to the set.

You can find these HERE.

Simply download the update/patch *.unitypackage and apply it to the same project in which you have

already imported Ultimate VFX from the Asset Store.

A TYPICAL EXAMPLE OF AN UPDATE.

With these patches, you save valuable resources that would be otherwise wasted having to wait for new

content or known fixes to be pushed to the Asset Store and/or constantly re-downloading large files.

Below is the full web address:

➤ HTTP://WWW.MIRZABEIG.COM/PRODUCTS/ULTIMATE-VFX/PATCHES/

http://www.mirzabeig.com/products/ultimate-vfx/patches/
http://www.mirzabeig.com/products/ultimate-vfx/patches/

EXTERNAL DEMOS

Ultimate VFX comes with additional demos that can be downloaded separately and imported into your

projects. You must first import Ultimate VFX, THEN the demo package. The demos are downloaded to the

folder highlighted in the image below:

These packages come with additional assets that are either owned by me, or I have the rights to

redistribute freely for commercial use (such as assets on the store by Unity or those in the public domain).

They are not included with the main UVFX package download to keep the asset hierarchy clean and to

prevent any licensing conflicts.

Use these demos to understand how to better use Ultimate VFX in real game environments!

SCREEN CAPTURE FROM THE DOWNLOAD-ABLE ‘STARFALL’ DEMO.

IMPORTANT: All external assets not owned by me for the demo will be in the “_assets” folder and are

NOT covered by the same license as Ultimate VFX:

Assets outside this folder for the demo are owned by me and are covered by the same license as Ultimate

VFX (you may use them commercially for your own game(s), etc). Such as the textures below:

TODO: setup demo download page…

TUTORIALS

Several tutorials exist for working with particles in Unity. I also have a few that deal with particles, all the

while being more relevant to my own assets (because I use them in the tutorials themselves).

Feel free to check them out!

➤ http://www.mirzabeig.com/tutorials/

➤ https://www.youtube.com/user/TheMirzaBeig

You’ll learn to create effects such as particle-based storm clouds (using XP Storm, the included

expansion pack in Ultimate VFX) and ambient glowing particles.

http://www.mirzabeig.com/tutorials/
https://www.youtube.com/user/TheMirzaBeig

LEGAL / LICENSING INFORMATION

Please refer to the Asset STORE End User License Agreement.

https://unity3d.com/legal/as_terms

CONTACT | FEEDBACK | SUGGESTIONS, ETC.

Ultimate VFX is an evolving asset. It’s open to feedback and suggestions to help drive it towards becoming

an even better product. The best way to leave feedback is to involve the entire community, so please

check out the forum thread!

If you’d like to communicate with me directly, please don’t hesitate to get in touch with me using either

a private message (PM) on the forums, or through e-mail (mirza.realms@live.ca).

A FINAL SCREENSHOT WHERE THE CONTENTS OF THE SCENE ARE MADE UP ENTIRELY OF
PREFABS FROM ULTIMATE VFX (WELL, EXCEPT FOR THAT GRID).

https://forum.unity3d.com/threads/349411/
mailto:mirza.realms@live.ca

